
An Experimental Study of Performance Comparison
for Various Parallel Sorting Algorithms

Jagdeep Singh*, Alka Singh**, Garima Singh***

*M.tech. (Computer Science & Engineering), KNIT, Sultanpur, India

**Astt.Professor – Deptt. Of Computer Science & Engineering, KNIT, Sultanpur, India

***B.tech. (Computer Science & Engineering), BBDU, Lucknow, India

Abstract- We all know that the most important procedure in
managing data is its sorting. To perform sorting, one can
choose different sorting algorithmic methods. But, all the
various sorting algorithms do not result the same speed,
execution time and efficiency at a given set of inputs. Hence, it
is necessary to know which algorithm can give better result
for a given platform and pre-defined data sets. This paper
presents reader an experimental study of performance
comparison for various parallel sorting algorithms.

Keywords- Bitonic sort, odd-even merge sort, parallel merge
sort, parallel rank sort, complexity.

I. INTRODUCTION
The process of rearranging data in a particular order that
may be in a increasing or decreasing manner is termed as
sorting. The data set may be alphabetical or numerical in
nature. Every existing matter in this world has its few
advantages as well as disadvantages. Similarly different
sorting algorithms have their advantages and
disadvantages. Sorting is used for performing search
operation in an easier way saving time. But, sorting
algorithms can’t be used with same efficiency on all data-
sets. Every method depending upon the data-set performs
differently in different aspects with respect to processing
time, speed and efficiency; few perform poorly whereas
few give results in a short time. To understand the above
phenomena in a better descriptive way, we in this paper
will carry out an experimental study for an assumed data-
set of various parallel sorting algorithms on the basis of
performance and complexity.

II. PARALLEL SORTING METHODS

Parallel sorting methods are classified on the following
basis:

1. On the basis of memory usage:
Sorting method Memory occupied

Odd – even sort 1

Parallel merge sort n

Bitonic sort ݊ሺlog	ሺ݈݊݃݋ሻሻ

Parallel rank sort ݊ሺlog	ሺ݈݊݃݋ሻሻ

Parallel quick sort ݈݊݃݋

2. On the computational complexity basis:
Sorting
method

Best case Average case Worst case

Odd – even sort n n2 n2

Parallel merge
sort

 ݊݃݋݈݊ ݊݃݋݈݊ ݊݃݋݈݊

Bitonic sort ሺlogሺ݈݊݃݋ሻሻ ሺlogሺ݈݊݃݋ሻሻ ሺlogሺ݈݊݃݋ሻሻ

Parallel rank
sort

ሺlogሺ݈݊݃݋ሻሻ ሺlogሺ݈݊݃݋ሻሻ ሺlogሺ݈݊݃݋ሻሻ

Parallel quick
sort

 n2 ݊݃݋݈݊ ݊݃݋݈݊

3. On the basis of recursion: Algorithms may be
recursive or non-recursive in nature. Few may be
both viz. parallel merge sort.

In this paper, we will discuss in detail about Parallel merge
sort, Parallel rank sort, Odd – even sort algorithms.

1. Parallel Merge Sort
(Splits data set in half  sorts each half recursively 
merges them back together to a sorted list) is the main
motto of merge sorting. The merge sort algorithm can be
parallelized by distributing (n/p) processors to each
processor. Each processor sequentially sorts the sub list and
then return to final sorted list.

Fig 1: Parallel merge sort algorithm e.g.

Jagdeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 738-740

www.ijcsit.com 738

Parallel merge sort time complexity:
• In sequential environment  O (݈݊݊݃݋)
• In parallel environment  O ሺ

௡

௣
݃݋݈

௡

௣
ሻ

2. Odd – even sort:
(Splits datasets in n/p sub lists  sequentially sort sub lists
 operates data sets according to even phase or odd phase
 merges them back together to a sorted list). In even
phase, even numbered processor communicates with next
odd numbered processor i.e. Pi communicates to Pi+1. In
this communication 2 sub-lists for each communication are
merged together. In odd phase, odd numbered processor
communicates with even numbered processor i.e. Pi
communicates to Pi-1.

Fig 2: Odd - even sort algorithm e.g.

Odd - even sort time complexity:
• In parallel environment  O (n2)

3. Parallel rank sort:

(Splits the data list to all the processor  each processor
compute the rank  construct the sorted list according to
rank). Data list is distributed among all the processors and
each processor contains n/p elements.

Fig 3: Parallel rank sort algorithm e.g.

Parallel rank sort time complexity:
• In sequential environment  O (n2)
• In parallel environment  O (n2)

Note: n is the list size whereas p is the number of
processors.

III. TESTINGS AND METHODOLOGY
How much an algorithm’s efficiency and performance can
be improved by Parallelism? To answer this question, we
have developed and executed three parallel sorting
algorithms. These algorithms are parallel merge sort,
parallel rank sort, and odd-even sort respectively.
The MPI library has been adopted to establish the
communication between processors. We have compared
three different parallel sorting algorithms for 10,000
integers (data set) on 2, 4, 6, 8, 10 and 12 work stations
respectively. Each algorithm has supported parallelization.
Finally, results in the form of combined graphs for three
different parameters viz. execution time, speed up and
efficiency respectively have been drawn below.
Execution time is the time required to execute an algorithm
whether in sequential environment or parallel environment;
Speed up is the ratio of the total time taken in the execution
of an algorithm in sequential environment to that in a

parallel environment, ݏሺ݊, ሻ݌ ൌ 	
்ሺ௡,ଵሻ

்ሺ௡,௣ሻ
	.

IV. RESULTS

The combined graph for execution time showing time taken
at every set of work stations is drawn below:

Fig 4: Combined graph for total execution time

The combined graph for speed up at every set of work
stations is drawn below:

Fig 5: Combined graph for speed up

Jagdeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 738-740

www.ijcsit.com 739

The combined graph for efficiency at every set of work
stations is drawn below:

Fig 6: Combined graph for efficiency

V. CONCLUSIONS

1. If we talk about the total execution time, the least
amount of time was taken by parallel merge sort
whereas parallel rank sort took maximum time for the
complete execution. This implies that parallel merge
sort algorithm is the quickest of all for the given data
set whereas the parallel rank sort algorithm is the
slowest.

2. From (speed up) point of view, odd – even sort
algorithm stands as the best algorithm followed by
parallel merge and then parallel rank sort.

3. Talking about efficiency, again odd – even sort
algorithm leads of all, worst stands the parallel rank
sort algorithm.

4. Finally it can be concluded that, from the chosen three
algorithms, parallel rank sort performs worst in each
of the cases.

5. It is upon the user to go for parallel merge sort or odd
– even sort depending upon his needs. If one wishes to
have shortest execution time i.e. fastest processing
algorithm, one should choose parallel merge sort
whereas if someone believes in efficiency, one may
choose odd – even sort algorithm.

REFERENCES:
[1] Kalim Qureshi and Haroon Rashid,“A Practical Performance

Comparison of Parallel Matrix Multiplication Algorithms on
Network of Workstations.”, IEE Transaction Japan, Vol. 125,
No. 3, 2005.

[2] Kalim Qureshi and Haroon Rashid,“ A Practical Performance
Comparison of Two Parallel Fast Fourier Transform
Algorithms on Cluster of PCS”, IEE Transaction Japan, Vol.
124, No. 11, 2004.

[3] Kalim Qureshi and Masahiko Hatanaka, “A Practical Approach
of Task Partitioning and Scheduling on Heterogeneous Parallel
Distributed Image Computing System,” Transaction of IEE
Japan, Vol. 120-C, No. 1, Jan., 2000, pp. 151-157.

[4] K. Sado, Y. Igarashi, Some Parallel Sorts on a Mesh-
Connected Processor Array and Their Time Efficiency,
Journal of Parallel and Distributed Computing, 3, pp. 398-
410, 1999.

[5] D. Bitton, D. DeWitt, D.K. Hsiao, J. Menon, A Taxonomy of
Parallel Sorting, ACM Computing Surveys, 16,3,pp. 287-318,
September 1984.

[6] Song, Y.D., Shirasi, B. A Parallel Exchange Sort
Algorithm. South Methodist University, IEEE 1989.

[7] B.R. lyer, D.M. Dias, System Issues in Parallel Sorting for
Database Systems, Proc. Int. Conference on Data Engineering,
pp. 246-255, 2003.

[8] F. Meyer auf der Heide, A Wigderson, The Complexity of
Parallel Sorting, SIAM Journal of Computing, 16, 1, pp. 100-
107, February 1999.

Jagdeep Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 738-740

www.ijcsit.com 740

